## Worksheet for 2020-01-27

## Conceptual questions

Question 1. What is the shape of the polar curve $r=4 \sin (\theta)$ ? Give bounds for $\theta$ so that this shape is traced exactly once. Hint: you can convert it to a Cartesian equation more easily if you multiply both sides by $r$.
Question 2. Is the polar curve $r=\cos (2 \theta)$ symmetric about the line $y=x$ ?

Question 3. Suppose that two polar curves $r=f(\theta)$ and $r=g(\theta)$ are defined for $0 \leq \theta \leq 2 \pi$. If the curves are identical (in the $x y$-plane), can you conclude that $f$ and $g$ are the same function?

What if the two curves were defined for $0 \leq \theta<\pi$ instead?

## Computations

Problem 1. Find the slope of the tangent line to the polar curve $r=1 / \theta$ at the point where $\theta=\pi$.
Problem 2 (Stewart $\$ 10.3 .64$ ). Find all points on the polar curve $r=e^{\theta}$ where the tangent line is either horizontal or vertical.
Problem 3. Find a polar equation $r=f(\theta)$ for the circle centered at the point $(a, b)$ (given in Cartesian coordinates) passing through the origin ${ }^{1}$. Give bounds for $\theta$ so that the circle is traced only once.

For the particular case $a=1, b=1$, do you get the same answer as what we got yesterday: $r=2 \sqrt{2} \cos (\theta-\pi / 4)$ ?
Problem 4. This problem is about the polar curve $r=2+\cos (3 \theta / 2)$ graphed in Figure 1. This curve also appears in Stewart §10.3.54 (a matching problem).
(a) Find the Cartesian coordinates of the three points of self-intersection.
(b) At the self-intersection point in the first quadrant, there are two tangent lines. Find their equations.


Figure 1. The polar curve $r=2+\cos (3 \theta / 2)$.

[^0]Below are the numerical answers to the worksheet exercises. If you would like a more detailed solution, feel free to ask me in person. (Do let me know if you catch any mistakes!)

## Answers to conceptual questions

Question 1. As $\theta$ goes from 0 to $\pi$, this traces out the circle centered at the point $(0,2)$ with radius 2 . (Complete the square).
Question 2. Yes. Try drawing the curve, either manually or e.g. with Desmos.
Question 3. $r=1$ and $r=-1$ both draw out the circle of radius 1 centered at the origin as $\theta$ goes from 0 to $2 \pi$ so the answer to the first question is "no."

The answer to the second question is yes, essentially because if you restrict $\theta$ to be between 0 and $\pi$, there is only one polar representative for each point in the Cartesian plane (other than the origin).

## Answers to computations

Problem 1. $-\pi$. (Switch to parametric as $x=(1 / \theta) \cos \theta, y=(1 / \theta) \sin \theta$.)
Problem 2. The $\theta$ values for vertical tangents occur when $\theta=\pi / 4+k \pi$, where $k$ is an integer. For horizontal tangents: $\theta=3 \pi / 4+k \pi$.

I didn't specify whether to give your answers in polar or Cartesian, but here are the points in Cartesian anyway:

$$
\left((-1)^{k} \frac{\sqrt{2}}{2} e^{\pi / 4+k \pi},(-1)^{k} \frac{\sqrt{2}}{2} e^{\pi / 4+k \pi}\right)
$$

and

$$
\left((-1)^{k+1} \frac{\sqrt{2}}{2} e^{3 \pi / 4+k \pi},(-1)^{k} \frac{\sqrt{2}}{2} e^{3 \pi / 4+k \pi}\right)
$$

Problem 3. $r=2 a \cos \theta+2 b \sin \theta$. (Write out the equation in Cartesian and then substitute.)
If we plug in $a=1, b=1$, we get $r=2 \cos \theta+2 \sin \theta$. This is the same as $2 \sqrt{2} \cos (\theta-\pi / 4)$ by the angle subtraction formula for cosine.

## Problem 4.

(a) $(-2,0),(1, \sqrt{3}),(1,-\sqrt{3})$. (Deduce the $\theta$ values either from rotational symmetry or by noting that, if the curve reaches an intersection point at some $\theta$, then it reaches it again at $\theta+2 \pi$. Then solve $2+\cos (3 \theta / 2)=2+\cos (3(\theta+2 \pi) / 2)$.)
(b) Here are the equations:

$$
\begin{aligned}
& y-\sqrt{3}=\left(\frac{16}{13}-\frac{25}{39} \sqrt{3}\right)(x-1) \\
& y-\sqrt{3}=\left(-\frac{16}{13}-\frac{25}{39} \sqrt{3}\right)(x-1)
\end{aligned}
$$

(Use the slope formula; first plug in $\theta=\pi / 3$ and then $\theta=7 \pi / 3$ because those correspond to the different "branches" at the intersection point.)


[^0]:    ${ }^{1}$ The only circles which have a "nice" polar form are those centered at the origin or passing through the origin.

