Math 53: Multivariable Calculus

Worksheet for 2020-01-27

Conceptual questions

Question 1. What is the shape of the polar curve $r = 4 \sin(\theta)$? Give bounds for θ so that this shape is traced exactly once. Hint: you can convert it to a Cartesian equation more easily if you multiply both sides by *r*.

Question 2. Is the polar curve $r = cos(2\theta)$ symmetric about the line y = x?

Question 3. Suppose that two polar curves $r = f(\theta)$ and $r = g(\theta)$ are defined for $0 \le \theta \le 2\pi$. If the curves are identical (in the *xy*-plane), can you conclude that *f* and *g* are the same function?

What if the two curves were defined for $0 \le \theta < \pi$ instead?

Computations

Problem 1. Find the slope of the tangent line to the polar curve $r = 1/\theta$ at the point where $\theta = \pi$.

Problem 2 (Stewart §10.3.64). Find all points on the polar curve $r = e^{\theta}$ where the tangent line is either horizontal or vertical.

Problem 3. Find a polar equation $r = f(\theta)$ for the circle centered at the point (a, b) (given in Cartesian coordinates) passing through the origin¹. Give bounds for θ so that the circle is traced only once.

For the particular case a = 1, b = 1, do you get the same answer as what we got yesterday: $r = 2\sqrt{2}\cos(\theta - \pi/4)$?

Problem 4. This problem is about the polar curve $r = 2 + \cos(3\theta/2)$ graphed in Figure 1. This curve also appears in Stewart \$10.3.54 (a matching problem).

- (a) Find the Cartesian coordinates of the three points of self-intersection.
- (b) At the self-intersection point in the first quadrant, there are *two* tangent lines. Find their equations.

FIGURE 1. The polar curve $r = 2 + \cos(3\theta/2)$.

¹The only circles which have a "nice" polar form are those centered at the origin or passing through the origin.

Below are the numerical answers to the worksheet exercises. If you would like a more detailed solution, feel free to ask me in person. (Do let me know if you catch any mistakes!)

Answers to conceptual questions

Question 1. As θ goes from 0 to π , this traces out the circle centered at the point (0, 2) with radius 2. (Complete the square).

Question 2. Yes. Try drawing the curve, either manually or e.g. with Desmos.

Question 3. r = 1 and r = -1 both draw out the circle of radius 1 centered at the origin as θ goes from 0 to 2π so the answer to the first question is "no."

The answer to the second question is yes, essentially because if you restrict θ to be between 0 and π , there is only one polar representative for each point in the Cartesian plane (other than the origin).

Answers to computations

Problem 1. $-\pi$. (Switch to parametric as $x = (1/\theta) \cos \theta$, $y = (1/\theta) \sin \theta$.)

Problem 2. The θ values for vertical tangents occur when $\theta = \pi/4 + k\pi$, where k is an integer. For horizontal tangents: $\theta = 3\pi/4 + k\pi$.

I didn't specify whether to give your answers in polar or Cartesian, but here are the points in Cartesian anyway:

$$\left((-1)^k \frac{\sqrt{2}}{2} e^{\pi/4 + k\pi}, (-1)^k \frac{\sqrt{2}}{2} e^{\pi/4 + k\pi}\right)$$

and

$$\left((-1)^{k+1}\frac{\sqrt{2}}{2}e^{3\pi/4+k\pi},(-1)^k\frac{\sqrt{2}}{2}e^{3\pi/4+k\pi}\right)$$

Problem 3. $r = 2a \cos \theta + 2b \sin \theta$. (Write out the equation in Cartesian and then substitute.)

If we plug in a = 1, b = 1, we get $r = 2\cos\theta + 2\sin\theta$. This is the same as $2\sqrt{2}\cos(\theta - \pi/4)$ by the angle subtraction formula for cosine.

Problem 4.

- (a) $(-2, 0), (1, \sqrt{3}), (1, -\sqrt{3})$. (Deduce the θ values either from rotational symmetry or by noting that, if the curve reaches an intersection point at some θ , then it reaches it again at $\theta + 2\pi$. Then solve $2 + \cos(3\theta/2) = 2 + \cos(3(\theta + 2\pi)/2)$.)
- (b) Here are the equations:

$$y - \sqrt{3} = \left(\frac{16}{13} - \frac{25}{39}\sqrt{3}\right)(x - 1)$$
$$y - \sqrt{3} = \left(-\frac{16}{13} - \frac{25}{39}\sqrt{3}\right)(x - 1)$$

(Use the slope formula; first plug in $\theta = \pi/3$ and then $\theta = 7\pi/3$ because those correspond to the different "branches" at the intersection point.)